Bounds for computing the tame kernel

نویسنده

  • Richard P. Groenewegen
چکیده

The tame kernel of the K2 of a number field F is the kernel of some explicit map K2F → ⊕ k∗ v , where the product runs over all finite primes v of F and kv is the residue class field at v. When S is a set of primes of F , containing the infinite ones, we can consider the S-unit group US of F . Then US ⊗ US has a natural image in K2F . The tame kernel is contained in this image if S contains all finite primes of F up to some bound. This is a theorem due to Bass and Tate. An explicit bound for imaginary quadratic fields was given by Browkin. In this article we give a bound, valid for any number field, that is smaller than Browkin’s bound in the imaginary quadratic case and has better asymptotics. A simplified version of this bound says that we only have to include in S all primes with norm up to 4|∆|3/2, where ∆ is the discriminant of F . Using this bound, one can find explicit generators for the tame kernel, and a “long enough” search would also yield all relations. Unfortunately, we have no explicit formula to describe what “long enough” means. However, using theorems from Keune, we can show that the tame kernel is computable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing generators of the tame kernel of a global function field

The group K2 of a curve C over a finite field is equal to the tame kernel of the corresponding function field. We describe two algorithms for computing generators of the tame kernel of a global function field. The first algorithm uses the transfer map and the fact that the `-torsion can easily be described if the ground field contains the `th roots of unity. The second method is inspired by an ...

متن کامل

The tame kernel of imaginary quadratic fields with class number 2 or 3

This paper presents improved bounds for the norms of exceptional finite places of the group K2OF , where F is an imaginary quadratic field of class number 2 or 3. As an application we show that K2Z[ √ −10] = 1.

متن کامل

Tame Kernels and Further 4-rank Densities

Abstract. There has been recent progress on computing the 4-rank of the tame kernel K2(OF ) for F a quadratic number field. For certain quadratic number fields, this progress has led to “density results” concerning the 4-rank of tame kernels. These results were first mentioned in [6] and proven in [8]. In this paper, we consider some additional quadratic number fields and obtain further density...

متن کامل

Kernel Groups and Nontrivial Galois Module Structure of Imaginary Quadratic Fields

Let K be an algebraic number field with ring of integers OK , p > 2, be a rational prime and G the cyclic group of order p. Let Λ denote the order OK [G]. Let Cl(Λ) denote the locally free class group of Λ and D(Λ) the kernel group, the subgroup of Cl(Λ) consisting of classes that become trivial upon extension of scalars to the maximal order. If p is unramified in K, then D(Λ) = T (Λ), where T ...

متن کامل

The 3-adic regulators and wild kernels

For any number field, J.-F. Jaulent introduced a new invariant called the group of logarithmic classes in 1994. This invariant is proved to be closely related to the wild kernels of number fields. In this paper, we show how to compute the kernel of the natural homomorphism from the group of logarithmic classes to the group of p-ideal classes by computing the p-adic regulator which is a classica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2004